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Abstract

We present a new reconnection-based Arbitrary Lagrangian Eulerian (ALE) method. The main
elements in a standard ALE simulation are an explicit Lagrangian phase in which the solution
and grid are updated, a rezoning phase in which a new grid is defined, and a remapping phase in
which the Lagrangian solution is transferred (conservatively interpolated) onto the new grid. In
standard ALE methods the new mesh from the rezone phase is obtained by moving grid nodes
without changing connectivity of the mesh. Such rezone strategy has its limitation due to the
fixed topology of the mesh. In our new method we allow connectivity of the mesh to change in
rezone phase, which leads to general polygonal mesh and allows to follow Lagrangian features of the
mesh much better than for standard ALE methods. Rezone strategy with reconnection is based on
using Voronoi tessellation. We demonstrate performance of our new method on series of numerical
examples and show it superiority in comparison with standard ALE methods without reconnection.
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1. Introduction

In numerical simulations of multidimensional fluid flow, the relationship of the motion of the
computational grid to the motion of the fluid is an important issue. One of two choices is typically
made: a Lagrangian framework or an Eulerian framework. In the Lagrangian framework, the grid
moves with the local fluid velocity, while in the Eulerian framework, the fluid flows through a grid
fixed in space. More generally, the motion of the grid can be chosen arbitrarily. The philosophy
of the Arbitrary Lagrangian-Eulerian methodology (ALE; cf. [62, 18, 19, 68, 69, 78, 95, 88]) is to
exploit this degree of freedom to improve the accuracy and efficiency of the simulation. The main
elements in an standard ALE simulation are an explicit Lagrangian phase in which the solution
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and grid are updated, a rezoning phase in which a new grid is defined, and a remapping phase
in which the Lagrangian solution is transferred (conservatively interpolated) onto the new grid
[88]. Clearly ALE also includes Lagrangian approach when the mesh is not changing during rezone
phase. It is important to note that Eulerian simulation can be considered as a limiting case of
ALE when the rezoned mesh coincides with the mesh at the beginning of the Lagrangian step –
such implementation of Eulerian methodology is usually called Eulerian-as-Lagrange-Plus-Remap
[119, 96] as opposed to direct Eulerian approach [35] in which gas dynamics equations in Eulerian
form are directly solved. Therefore, ALE methodology is very flexible and successfully used to solve
complicated problems.

The numerical methods related to Lagrangian phase of ALE are relatively well developed (for
example [19, 27, 26, 17, 29, 79, 28, 30, 37, 31, 105, 104, 106, 32, 87, 15, 99, 84, 85, 83]), as well as
the remapping phase (being considered as conservative interpolation or advection) [19, 89, 74, 59,
81, 96, 120, 46, 20, 45, 93].

Our opinion is that the most difficult and least developed phase of ALE is the rezoning phase.
A review of existing rezone strategies for ALE methods is presented in [71] including analysis of
alternative approaches [78, 116, 42, 18, 54, 95, 22, 124, 8, 44, 125]. A review of a more general
class of methods, namely moving mesh methods, is presented in [76].

Ideally the mesh has to adapt to the solution. Any adaptive scheme is composed of three main
ingredients: an optimal-mesh criterion, an error estimator or error indicator, and an algorithm
of the strategy for the mesh improvement. These ingredients answer to the following questions:
How should the optimal mesh be defined? Where are mesh changes required? And how should
the improved mesh be constructed? For standard ALE methods a strategy for mesh improvement
is based on moving the spatial grid. Generally speaking the goal of rezoning is to improve the
efficiency of the ALE method, that is, to achieve a given accuracy with the least amount of “work”.
“Work” in this context should be understood not only as the CPU time but also as memory and
man-hour resources. However, to design an adaptive method one needs a quantitative assessment
of optimality. The problem is that, for non-linear equations of gas dynamics in 2D and 3D, at the
moment, it is not feasible to obtain such quantitative assessment. For this reason practitioners are
usually using some qualitative approaches. In real complex ALE simulation the most basic goal
of rezoning is simply to run calculation to completion without user intervention and still achieve
reasonable accuracy (recall that we always can run ALE in Eulerian=Lagrange-Plus-Remap mode,
which will be robust but less accurate). Even this goal is usually not achieved in most production
ALE codes. For example, even for very popular methods based on Winslow smoothing, [125, 124],
practical simulations require the introduction of numerous geometrical and physics based triggers
and lockers, that is, mesh constraints that typically keep a node Lagrangian until some condition
is reached e.g. element quality criterion (to detect cell distortion or collapse) or physical condition
is reached in surrounding elements (for example, did the cell fully detonate?) [95, 13, 14, 63].

As it is mentioned in [13, 14], the mesh movement philosophy applied to most applications,
related to high-speed multimaterial flows, is to develop algorithms that will move the mesh in
such a way as to maintain robustness while staying as close as possible to the Lagrangian mesh
motion. The Lagrangian mesh motion naturally follows most flow features of interest such as
shocks, material interfaces and steep gradients and allows users to focus zoning in materials of
interest. Mesh relaxation is then used in regions of high material deformation to improve mesh
quality. In standard ALE methods, which use fixed mesh topology, nodes are moved to refine
mesh some areas of the problem at the expense of coarsening mesh in other parts of the problem.
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Generally, the increase of mesh resolution is limited, and, most importantly it can degrade the
mesh quality leading to robustness problems. One of the most cited papers in mesh rezoning
is [22], where authors use variational approach to combine requirements related to maintaining
geometric quality of the mesh and some mesh adaptation based on equidistribution of some error
indicator. Functional which is responsible for mesh smoothness essentially can be considered as
a variational form of Winslow approach for which the corresponding optimization problem is well
behaved. In contrast, the functional responsible for error equidistribution, if used by itself, has
multiple local minima and its minimization can lead to tangled mesh. A difficulty arises when one
tries to combine these — how should one weight the relative importance of these separate goals
and still obtain a well behaved optimization process? In particular, the two global functionals have
distinct (physical) dimensions, and so, can only be combined with some dimensional constant. At
present, there is no theoretical basis for choosing this constant, thus delegating the decision to
the user. In practice, bad choice of this parameter can lead to loss of accuracy (if the mesh is
over-smoothed) or robustness problem (if the mesh becomes tangled).

In our opinion, the main reason for this is that standard ALE codes utilize a fixed topology
mesh, defined at the outset, which in general will not be able to adapt to the dynamically evolving
interface shape (or contact discontinuity) in spite of efforts at regularization, (see Section 2 for
more details). The most general solution to this difficulty, while preserving a Lagrangian nature of
mesh motion is to relax the constraints on mesh topology and allow reconnection.

The idea of using mesh reconnection to solve partial differential equations is not new. To
the best of our knowledge, in context of computational gas dynamics the ideas related to mesh
reconnection were first used in [94]1. In this seminal paper the authors suggest to use a set of
point Lagrangian particles and surround them with domains (parcels) to describe the media. The
shape and size of these parcels are determined by the positions of the particles. The connectivity
of the set of particles is not fixed but can vary with time depending on relative positions of the
particles. After connectivity is established the set of neighboring particles defines the stencil on
which Lagrangian equations are discretized.

In our opinion paper [94] has all basic ideas that lead to development of so-called free-Lagrange
(or free-Lagrangian) methods, [52, 21, 117], which were very popular in 80’s and early 90’s The
name free-Lagrange was introduced in [36] and the corresponding code was called FLAG. We need
to analyze the main features of free-Lagrange approach in order to precisely position our new
reconnection-based ALE method with respect to well established methods.

We start our analysis with methods, which we will call pure free-Lagrangian methods, [90, 118,
51, 110, 109, 103, 9]. In these methods, the fluid is represented by point particles surrounded by
parcels. Each particle and its corresponding parcel represent a single material, that is, there is no
mixed (containing several materials) parcel. Mass exchange between particles is forbidden. Flow
variables are stored at the particle within each parcel, which moves in a ”Lagrangian” fashion.
The shape of the parcel is determined by constructing Voronoi mesh [91], in which each particle
(generator, site) is enclosed within convex polygonal cell. By definition, in a Voronoi mesh each
cell encloses all points in the domain which are closer to the corresponding particle then to any
other particle. The mesh is fully reconstructed after some number of time steps to allow grid
connectivity to change naturally under influence of shear or vorticity. Connectivity of Voronoi mesh

1In this paper we are not considering meshless methods, like smoothed particle hydrodynamics – SPH – interested
readers can refer for example to [21, 77, 64].
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uniquely defines the ”neighbors” that is particles which parcels share edge with given particle. These
neighbors define the stencil on which gas dynamics equations are approximated. In ”pure” free-
Lagrange, one approximates some form of Lagrangian equations. Several discretization approaches
are possible, for example, mimetic finite difference [90], or Godunov type methods [9]. The energy
equation can be approximated in conservative form [9], or in non-conservative form as in [90].
In later case mimetic approach is used to guarantee conservation of total energy. There are also
different approximations used for continuity equation. Most standard approach is to define density
as ratio of particle mass (which is constant in time) and volume of the corresponding parcel.
However, one also can define the volume from a special evolution equation as it is usually done
in Godunov based methods. Let us emphasize that there is no ”remapping” phase in ”pure”
free-Lagrangian methods.

Now let us discuss how pure are ”pure” free-Lagrangian methods. Such analysis requires the
definition of what is a Lagrangian method. One can define a Lagrangian method as a method where
equations in Lagrangian coordinates are approximated. That is to say, governing equations do not
have advective terms; in other words no exchange of mass, momentum and energy between these
particles is allowed. In case of ”pure” free-Lagrangian methods these two criteria are satisfied. But
this is not enough to call method Lagrangian. For a Lagrangian method the boundary of parcel
has to move in Lagrangian fashion too. Unfortunately, for ”pure” free-Lagrange it is not the case
because parcels are Voronoi cells and the vertices of the Voronoi cell are not moved independently
in a Lagrangian way but defined from positions of the particles in a very nonlinear way [90]. It is
well known [52, 21, 117] that a Voronoi cell is not a Lagrangian object and it is rigorously proven
in [114] that for ”pure” free-Lagrangian methods discrete continuity equation is not consistent
(order of approximation is zero) with continuous continuity equation; it also means that the so-
called Geometric Conservation Law (GCL), [50, 83], which can affect stability of the method,
[50], is not fulfilled. It usually implies that small changes in the particle positions (especially if
two particles are very close to each other) can lead to very large change of the volume. Non-
Lagrangian behavior of Voronoi cell dramatically decreases accuracy near contact discontinuity.
There are several approaches which intend to mitigate non-Lagrangian behavior of Voronoi cells.
For example, in [90, 110] special type of artificial viscosity was introduced which helps to regularize
the particle positions and do not allow particles to be to close to each other. In [9] some corrections
to velocity of generators are introduced and in [65] special artificial forces are introduced to correct
shape of parcels. Another approach is to keep Voronoi mesh inducing connectivity, but define
parcel shape using so-called median mesh [103], where the coordinates of vertices are defined by
simple interpolation of a particle position and its two consecutive neighbors. It leads to non-convex
shape of parcels and abrupt change in parcel volume when the connectivity of the mesh is changing
(in contrast volume and shape of Voronoi cells are continuous in time, but are not Lagrangian
objects). This clearly contradicts another important property of Lagrangian parcel: Its shape is
supposed to change continuously in time including instances when connectivity changes. Because
of abrupt change of volume of the parcel some remapping is needed. The conclusion of this analysis
is that even pure-Lagrangian method are neither ”pure” nor ”Lagrangian”. Still as demonstrated,
for example in [9, 65, 11, 66, 10, 110] these types of methods can be very successful for particular
problems, but each problem requires some special strategy to mitigate non-Lagrangian nature of
Voronoi cells.

There were several other ”free-Lagrangian” methods, which differ in how connectivity of the
mesh is established, spatial centering of flow parameters (particle centered, parcel centered, stag-
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gered), what form of equations are used, what type of discretization is used, implicit or explicit,
some of the methods having explicit remap phase, and so on. Interested reader can refer to the fol-
lowing papers [48, 36, 47, 111, 33, 34, 61, 122, 5, 92, 12, 4, 53]. Very educational are the roundtable
discussions published in [52, 117]. The conclusion is that these ”free-Lagrangian” methods are
even less Lagrangian then ”pure” free-Lagrangian methods, which we have analyzed in previous
paragraph. However all of these methods allow change of connectivity of the mesh with time.

Our belief is that because free-Lagrangian methods are not really Lagrangian then, explicitly or
implicitly, they incorporate a rezone phase, and consequently, a corresponding remap phase. Some
of them explicitly states this remap phase. Nevertheless if the free-Lagrange method does not have
a remap phase, errors related to it will manifest itself one way or another.

It leads us to the conclusion that methods where connectivity of the mesh can change have to
be developed in reconnection-based ALE (ReALE) framework, where rezone stage includes recon-
nection. Let us note that similar philosophy was used in [42], even so authors of [42] do not call
their method ALE or free-Lagrange.

Let us finally note that when we were writing this paper we became aware of the paper [115].
In this paper the author proposed a new formulation of continuum hydrodynamics based on an
unstructured grid. In this work the mesh is defined as the Voronoi tessellation of a set of discrete
mesh-generating points. The gas dynamics equations are solved using a Godunov-type finite volume
scheme on a moving Voronoi mesh. This approach corresponds to a direct ALE strategy (no explicit
Lagrangian, rezone and remap phases - governing equations are written in moving coordinate
system) in which the motion of the grid is ruled by prescribing the velocities of the mesh generators.
The numerical results obtained with this method are quite impressive and display its robustness
and accuracy. However, we note that this method may suffer from several limitations. First, this
is by construction a mono-material formulation since the author is using a direct ALE strategy.
We believe that its multi-material extension is far from being obvious. We also note that this ALE
scheme does not fulfill GCL requirement. This flaw can lead to severe problems.

As standard for ALE method, the main elements in ReALE simulation are an explicit La-
grangian phase in which the solution and grid are updated (without changing connectivity), a
rezoning phase in which a new grid is defined (which includes changing connectivity and also
adding or deleting cells or vertices of the parcels), and a remapping phase in which the Lagrangian
solution is transferred (conservatively interpolated) onto the new grid. Flowchart of the entire
ReALE algorithm is presented in Section 5. For ReALE all three phases are supposed to satisfy
specific requirements which are different from standard ALE methods.

We assume, that at the beginning of the calculation (t = 0) as well at the beginning of each time
step (after rezone phase) the computational mesh consists of Voronoi cells corresponding to some
set of particles (generators, sites), that is, distribution of generators defines the mesh. Initialization
of the mesh as well as necessary definitions related to Voronoi diagrams are given in Section 3 and
Section 4.

Because of reconnection in rezone phase, the Lagrangian phase of the ReALE method has to
deal with discretization of the Lagrangian equations on general polygonal meshes and corresponding
update of this polygonal mesh is supposed to be Lagrangian. There are several papers dealing with
discretization of Lagrangian equation on general polygonal meshes [23, 25, 24, 42, 112, 113]. In
this paper we will use compatible mimetic finite discretizations [27, 26] on staggered mesh, which
historically close to [23, 25, 24] and newly developed cell-centered discretizations based on Godunov
approach [87, 85, 83], which satisfy GCL (contrarily to [42], which does not satisfy GCL). Necessary
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details about discretizations used in Lagrangian phase of our ReALE methodology are presented
in Section 6.

The rezone phase of ReALE has to include both mesh movement and reconnection procedure.
In this paper we used a set of particles (generators) and the machinery of Voronoi diagrams to
do both mesh movement and mesh reconnection. That is our rezone strategy consists of a special
movement of generators. It is close to Lagrangian in some sense, but also include some smoothing
procedure based on notion of centroidal Voronoi diagrams [40]. The rezone phase of our new ReALE
approach is described in Section 7.

In the remapping phase, the Lagrangian solution is transferred (conservatively interpolated)
onto the rezoned mesh. Lagrangian mesh is the result of one time step Lagrangian movement of
the Voronoi mesh corresponding to the distribution of the generators at the previous time step.
The new rezoned mesh is the Voronoi mesh corresponding to the positions of generators created
by the rezone phase. During the rezone phase generators are moved in an ”almost” Lagrangian
way and because Voronoi cells are changing their shape continuously with respect to positions of
the generators; rezoned and Lagrangian meshes are ”close”. However, in general, the connectivity
of the Lagrangian and rezoned mesh are different. Consequently remapping methods have to be
able to conservatively transfer flow parameters from one polygonal mesh to another. In this paper
intersection (overlay) based remap is used [59, 42, 89, 74], however, one can take advantage of
how Lagrangian and rezoned meshes are constructed and design more efficient methods [73]. The
remapping phase is described in Section 8.

We demonstrate the performance of our method on a set of numerical tests presented in Section
9. Finally, conclusions and future work are summarized in Section 10.

2. Motivation

To motivate our research let us consider the Rayleigh-Taylor instability problem. It consists of
two ideal gases with initial densities ρtop = 2 and ρbottom = 1; in both cases the adiabatic constant
is γ = 1.4. Initially, the heavier gas is above the lighter gas in a rectangular vessel [0 : 1/6]× [0 : 1],
with gravitational field directed vertically downward and with magnitude g = 0.1. The interface
has been deliberately perturbed as described by formula yi(x) = 1/2 + 0.01 cos(6π x). Initially
both gases are at rest; the pressure distribution is approximately hydrostatic and is defined in the
lighter gas

P = 1 + ρtop g 0.5 + ρbottom g (0.5 − y),

and in the heavier as
P = 1 + ρtop g (1− y).

It is well known that such configuration is unstable and as time progresses, the heavier gas will
sink and the lighter gas will rise through the formation of bubbles and spikes. Further details
of the general theory of Rayleigh-Taylor instabilities can be found in [75]. The time evolution of
this problem leads to a rollup of the interface and the generation of significant vorticity. This
problem is poorly suited for Lagrangian methods, and is usually tackled using Eulerian or ALE
techniques. As discussed in the Introduction, for standard ALE methods the mesh does not change
connectivity. Improvement of the mesh on the rezone stage is achieved only by moving nodes.
Here we consider a standard ALE approach based on cell-centered Lagrangian method described
in [86, 83], which uses Winslow approach at rezone phase [125]. In Fig. 1 a) we present meshes for
time moments t = 7, 8, 9; in Fig. 1 b) we present vorticity color map at the same time moments. On
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Lagrangian stage of ALE the mesh is trying to follow the flow, but because of development vorticity
it eventually leads to a tangled mesh. On rezone stage the mesh is slightly relaxed, however on
the next time step of the Lagrangian phase, the mesh is trying to follow vorticity development
and, again, is approaching a tangling situation. The meshes in Fig. 1 a) are the result of these
competing processes.

In standard ALE method the mesh cannot change connectivity, and mesh with fixed connectivity
has some limitation in how much it can deform. In Fig. 2 we present fragment of the mesh at
t = 8 (panel a) as well as only ”horizontal” (panel b) and only ”vertical” (panel c) logical lines of
the mesh. From this figure it is clear that logically rectangular mesh cannot deform much further
in regions where vorticity is developing. At some time moment the mesh eventually stagnates in
subregions where vorticity is still developing. Similar pictures can be found in [71] for ALE using
staggered discretization and reference Jacobian rezone strategy.

This stagnation means that in subregions where vorticity is developing ALE method with fixed
connectivity actually becomes Eulerian in its Lagrange+Remap form. It leads to excessive smooth-
ing of flow parameters at remapping stage, and eventually to loss of accuracy in these regions.
Moreover, because the mesh is logically rectangular, stagnation of the mesh in some regions leads
to locking of the mesh in other regions, resulting to loss of overall accuracy. Also stagnated mesh
has a low geometrical quality which additionally contributes to the loss of accuracy. One clearly see
that behavior of vorticity presented in Fig.1 b) is not physical because it is oscillates from positive
to negative at neighboring cells, which is especially pronounced at t = 9.

We believe that the resolution of this problem lies in allowing reconnection during the rezone
stage of ALE method. However allowing reconnection at rezone phase has its implications on all
phases of ALE. First of all, we need to decide what is the mechanism of the reconnection. In this
paper we use Voronoi tessellation machinery. In next Section 3 we give the necessary information
related to Voronoi meshes. Details about rezone strategy are given in Section 7. Voronoi mesh
consists of general polygons, therefore on Lagrangian stage we need to use a Lagrangian scheme
which is capable to deal with general polygons. Two such methods are described in Section 6.
Finally, the remap stage must perform a conservative interpolation between two polygonal meshes,
this stage is described in Section 8.

3. Voronoi Tessellation

Let us consider a convex computational domain Ω in 2D. For a set of generators Gc = (xc, yc) ∈
Ω the Voronoi cell Ωc is defined as follows, [91],

Ωc = {X = (x, y) ∈ Ω : |X−Gc| ≤ |X−Gc′ |, for all c 6= c′} (1)

Voronoi cell Ωc is a convex polygon, and the set of Voronoi cells define the tessellation of Ω, that
is, they cover Ω without holes or overlaps. There are several generalizations of the definition of
Voronoi cell for non-convex domains, like bounded and constrained Voronoi diagrams [6, 7, 70],
VPS (visibility shortest path) Voronoi diagrams [91] (pp.163–156). In this paper we will only
consider convex computational domains and will not describe these generalizations. We use an
incremental algorithm for the construction of Voronoi tessellation which is described in [109]. In
general any other available algorithm can be used. In Fig. 3 a) we present Voronoi cells in the unit
square which correspond to generators marked by ×. For now on, a cell Ωc is referred to with its
unique index c. By definition cell c′ is a neighbor of cell c if it shares a face with it. The set of
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Figure 1: Rayleigh-Taylor problem at time moments t = 7, 8, 9 — a) Mesh fragments. b) Vorticity color map. Color
scale is from blue (minimal negative vorticity) to red (maximal positive vorticity). White color corresponds to zero
vorticity.
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Figure 2: Fragment of mesh at t = 8: a) Mesh fragment, b) ”Horizontal” logical lines, c) ”Vertical” logical lines

neighbors of cell c is denoted by C(c). The set of vertices of cell c is denoted by P(c). Any vertex
of a Voronoi mesh is shared by three cells only. The set of faces of cell c is denotes as F(c), each
face shares only by two cells. These relationships completely define the connectivity of the mesh.
Depending on the position of generators, the Voronoi mesh can be genuinely non-uniform. One
of the possible measures of non-uniformity is how far is the centroid of a Voronoi cell from the
generator corresponding to this cell. Let us introduce, Xc, the centroid of the cell Ωc as follows

Xc =
1

| Ωc |

∫

Ωc

XdV,

where | Ωc | denotes the volume of the cell Ωc.
In all panels of Fig. 3 positions of centroids are marked by circles ◦ and position of generators

are marked by crosses ×. Clearly, the closer the centroids and the generators are, the more uniform
the mesh is. It brings us to an important new definition: Centroidal Voronoi Tessellation (CVT)
[40]. Voronoi tessellation is called centroidal Voronoi tessellation if the position of the cell centroid
coincides with the position of the corresponding generator. CVT type of meshes are asymptotically
made of perfect hexagons. Meshes of CVT type have several attractive properties, in particular
discretizations of partial differential equations are usually more accurate on such meshes [67].

There is a very simple algorithm to create CVT depicted in Fig. 3. It starts with an arbitrary
distribution of generators, Fig. 3 a), and constructs its corresponding Voronoi tessellation. Then it
computes centroids of the constructed Voronoi cells and uses them as generators for a next iteration.
The resulting mesh after one iteration is presented in Fig. 3 b). Let us note that regularity of the
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Figure 3: Lloyd’s algorithm to smooth Voronoi mesh: a) Initial mesh — b) Mesh after one iteration — c) Mesh after
ten iterations — d) Final ”converged” mesh — Crosses × correspond to positions of the generators. A circle ◦ is the
position of the centroid of the Voronoi cell which corresponds to a unique generator.

mesh is visibly improved. The mesh after ten iterations is presented in Fig. 3 c). Finally the
converged mesh is presented in Fig. 3 d). This algorithm is called Lloyd’s method, readers can
refer to [40, 39] for more details.

For the purposes of our paper one iteration of Lloyd’s algorithm can be considered as a mesh
smoothing step, which, in some sense, is analogous to a Winslow iteration for meshes with fixed
connectivity. However, in Lloyd’s algorithm connectivity of the mesh may change at each iteration.

4. Initialization

Modeling of any problem starts with the creation of an initial mesh. In our approach, an initial
mesh is created by the distribution of generators and the construction of the associated Voronoi
mesh. As with any ALE method the initial mesh reflects the knowledge about the underlying
physical problem, for example, initial distribution of materials, direction and shape of the main
shocks and other important features of the flow. Let us repeat that the initial mesh has to be
Voronoi mesh and has to be consistent with rezone strategy. “Consistent” means that the initial
mesh has to be constructed in such a way that it will not change dramatically at rezone stage. This
issue will be clarified in Sections 7 and 9. Another important issue is that, as for any ALE method,
we want to track material boundaries as close as possible. Therefore, initially, we are trying to create
a mesh, the cell faces of which coincide with material boundaries. Let us demonstrate some ideas
on a simple example of a bubble containing one material in a rectangular computational domain
filled with another material, see Fig. 4 (this is a fragment of the initial mesh for the shock-bubble
interaction problem described in details in Section 9.3). For this problem it is important to have
an orthogonal mesh with mesh lines aligned with coordinate directions outside the bubble because
a vertical shock will approach the bubble from the right. As a consequence the shock direction will
be aligned with the mesh. A square mesh is the degenerate Voronoi mesh obtained with a regular
distribution of generators; these are located at the centers of the squares. In order for the boundary
of the bubble to be represented by faces of Voronoi cells, the generators have to be located on the
same distance from the boundary in orthogonal direction. In this case because the boundary is a
circle of some radius r, generators are located also on concentric circles of smaller, (r − ∆r), an
bigger, (r + ∆r) radii. Inside the bubble, generators are located on circles, which radii are equally
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Figure 4: Mesh for a bubble in a rectangle.

distributed between 0 and r. On each circle we put a different number of generators such that
the arc length between generators on each circle is approximately the same for all circles. It then
creates a pseudo polar mesh. This mesh is a little bit extended outside the bubble. Technically
to combine a square mesh and a pseudo polar mesh we first create generators which produce the
square mesh, then generators which are located in disk of radius r+2∆r are removed and replaced
by generators corresponding to the pseudo polar mesh. The resulting mesh is presented in Fig 4.

Similar techniques can be applied for fitting more complicated shapes, some ideas are presented
in [97].

In some cases the faces of a Voronoi cell can be very small. In degenerate cases like a rectangular
Voronoi mesh, some edges actually have zero length. This situation is schematically presented in
Fig.5 a). In this figure the edge PACD PABC has an almost zero length. Time step control for
Lagrangian phase of ReALE method is based on minimal edge length over the cell, see Section 6.
Therefore, the presence of small edges can dramatically reduce the time step. The solution lays in
the introduction of a ”cleaning” step that removes edges of the cell, which are small in comparison
with a local characteristic length.

In situation presented in Fig.5 cell A has neighbors . . . B,C,D . . .. Cells D and B are not a
neighbors. Removing edge PACD PABC is equivalent to collapsing the two points into one point
PABCD as schematically presented in Fig. 5 b). It means that point PABCD is now shared by four
cells A, B, C, D. Cells A and C do not share any edge, and cells A and C do not have zero length
edge anymore. We call this process small-edge cleaning. Cleaning is applied not only to zero length
edges but to all edges which are small in comparison with the local characteristic length. More
details on cleaning is given in Section 7. It is important to note that after the cleaning step, the
computational mesh is not a Voronoi tessellation anymore. In particular each point can be shared
by more than three cells.

5. Flowchart of ReALE Method

In Figure 6 we describe the flowchart of ReALE method. Initialization stage is described in
previous section. The result of this stage is the mesh In=0, which, in general, is an unstructured
polygonal mesh obtained by the cleaning of a Voronoi mesh. On the initialization stage we also
define the initial condition for the degrees of freedom Un=0 related to each particular Lagrangian
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Figure 5: Cleaning of small edges: a) before cleaning, b) after cleaning.

scheme, for example, for cell centered discretization, these are density, velocity and pressure of the
cell (any other variable being deduced from them). First, the Lagrangian step uses the mesh I0. At
time step n the Lagrangian scheme starts with the rezoned mesh obtained from the previous time
step. On Lagrangian stage the mesh is moving with the flow. The result of the Lagrangian step is
the Lagrangian mesh Ln+1 and all physical quantities on this mesh - Un+1

L . Recall that Lagrangian
algorithm has to deal with general polygonal meshes. Let us note that in the Lagrangian stage the
generators do not play any role. During the Lagrangian step the mesh does not change connectivity.
This stage is described in Section 6.

On the rezone stage we define positions of generators Gn+1
c and construct the associated Voronoi

tessellation. It is followed by a cleaning step. The result of the rezone phase is a general polygonal
mesh Rn+1. In general, connectivity of mesh Rn+1 is different from connectivity of mesh Ln+1.
However the number of cells is the same. Details of the rezone stage are provided in Section 7.
For the remap stage we perform a conservative interpolation of flow parameters from Lagrangian
mesh Ln+1 onto rezoned mesh Rn+1. Because in general these two meshes are polygonal meshes
with different connectivities, one needs to use an intersection (overlay) based remap method. The
remapping stage is described in details in Section 8. Finally to start new time step we set In+1 as
being the rezoned mesh Rn+1. In other words the new Lagrangian step starts with the polygonal
mesh obtained as result of rezoning from the previous time step and the physical variables Un+1

from the remap phase.

6. Lagrangian phase

In this section we present the discretization of the Lagrangian hydrodynamics over a general
two-dimensional polygonal grid that will be the first phase of our ReALE algorithm. We present
two discretizations, the first one is based on a staggered placement of the variables, whereas the
second one is cell-centered. In Lagrangian hydrodynamics methods, a computational cell moves
with the flow velocity. In practice, this means that the cell vertices move with a computed velocity,
the cell faces being uniquely specified by the vertex positions. Thus, Lagrangian methods can
capture contact discontinuity sharply in multi-material fluid flows. However, in the Lagrangian
framework, one has to discretize not only the gas dynamics equations but also the vertex motion
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in order to move the mesh. Moreover, the numerical fluxes of the physical conservation laws must
be determined in a compatible way with the vertex velocity so that the geometric conservation
law (GCL) is satisfied, namely the rate of change of a Lagrangian volume has to be computed
coherently with the node motion. This critical requirement is the cornerstone of any Lagrangian
multi-dimensional scheme.

The most natural way to solve this problem employs a staggered discretization in which position,
velocity and kinetic energy are centered at points, while density, pressure and internal energy are
within cells. The dissipation of kinetic energy into internal energy through shock waves is ensured
by an artificial viscosity term. Since the seminal works of von Neumann and Richtmyer [121],
and Wilkins [123], many developments have been made in order to improve the accuracy and
the robustness of staggered hydrodynamics [30, 31, 27]. More specifically, the construction of a
compatible staggered discretization leads to a scheme that conserves total energy in a rigorous
manner [28, 26].

An alternative to the previous discretizations is to derive a Lagrangian scheme based on the
Godunov method [57]. In the Godunov-type method approach, all conserved quantities, including
momentum, and hence cell velocity are cell-centered. The cell-face quantities, including a face-
normal component of the velocity, are available from the solution of an approximate Riemann
problem at each cell face. However, it remains to determine the vertex velocity in order to move
the mesh. In one of the first papers related to application of Godunov methods on general polygonal
mesh in 2D, [1], the flux computation was not compatible with the node displacement, and hence the
GCL was not satisfied. This incompatibility generated additional spurious components in the vertex
velocity field whose correction required a very expensive treatment [43]. An important breakthrough
concerning the compatibility between flux discretization and vertex velocity computation has been
introduced in [37, 84]. In these papers, authors present schemes in which the interface fluxes and
the node velocity are computed coherently thanks to an approximate Riemann solver located at
the nodes. This original approach leads to first-order conservative schemes which satisfy a local
semi-discrete entropy inequality. The multi-dimensional high-order extension of these schemes are
developed in [32, 87, 83, 82].

In what follows, we recall briefly the main features of the two Lagrangian schemes, staggered
and cell-centered, that will be used to construct our ReALE algorithm. The necessary details
concerning the discretization can be found in previously published papers.

6.1. Governing equations

The gas dynamics equations, in Lagrangian form, write as follows

ρ
d

dt

(

1

ρ

)

−∇ ·U = 0, (2a)

ρ
d

dt
U + ∇P = 0, (2b)

ρ
d

dt
E +∇ · (PU) = 0, (2c)

where d
dt

is the material time derivative. Here, ρ, P , U and E denote the density, pressure, velocity
and specific total energy of the fluid. The previous equations express the conservation of volume,
momentum and total energy in a frame which moves with the fluid. The thermodynamic closure
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of this set of equations is obtained by the addition of an equation of state which is taken to be of
the form

P = P (ρ, ε) ,

where the specific internal energy, ε, is related to the specific total energy by ε = E − 1
2‖U‖

2. We
note that for smooth flows, by subtracting kinetic energy equation from total energy equation, we
get the time rate of change of specific internal energy

ρ
d

dt
ε+ P∇ ·U = 0, (3)

using (2a), this equation rewrites

ρ
d

dt
ε+ Pρ

d

dt

(

1

ρ

)

= 0. (4)

Recalling the Gibbs relation, TdS = dε + Pd
(

1
ρ

)

, where T denotes the temperature and S the

specific entropy, it turns out that the previous internal energy equation (4) is equivalent to the
conservation of entropy. We emphasize that this conclusion is valid only for smooth flows. The
case of non-smooth flows, such as shock waves, is taken into account requiring that the second law
of thermodynamics must be satisfied. To this end, we write the internal energy equation in the
following non-conservative form

ρ
d

dt
ε+ Pρ

d

dt

(

1

ρ

)

= ρT
d

dt
S ≥ 0. (5)

This thermodynamic framework will be used in what follows to derive the staggered discretization.
Let us remark that equation (2a) is also named the Geometric Conservation Law (GCL) and is

strongly linked to the motion of the fluid which is ruled by the trajectory equation

dX

dt
= U (X(t), t) , X(0) = x. (6)

Here, X(t), denotes the position vector of a fluid particle at time t > 0, whose initial location was
x. One has to discretize the GCL with great care so that the discrete GCL over a cell remains
compatible with the discrete motion of the cell vertices. Namely, the time rate of change of a
Lagrangian volume has to be computed coherently with the node motion. This is the cornerstone
of any Lagrangian discretization.

6.2. Compatible staggered scheme

The staggered discretization used in this paper is based on a staggered placement of the vari-
ables. Namely, the kinematic variables, including the velocity, are located at the nodes while the
thermodynamic variables (density, pressure and specific internal energy) are defined at the cell cen-
ter. We note that this placement of the variables allows the staggered scheme to fulfill naturally the
GCL compatibility requirement and at the same time to construct a discrete divergence operator.

The discretizations of momentum and specific internal energy are derived from each other
by use of important concept of compatible discretization [28], which is based on detailed balance
between kinetic and internal energy and uses subzonal masses and subzonal forces. This compatible
hydrodynamics algorithm is thus designed to conserve momentum and total energy exactly in
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discrete form. The dissipation of kinetic energy into internal energy through shock waves is ensured
by means of an artificial viscosity which can be edge based [31] or tensorial [27]. This mechanism
leads to a dissipation that is coherent with the second law of thermodynamics. The subzonal
pressure method is also used for the control of hourglass type motion [30]. Finally, the time
integration method is a predictor-corrector technique which is detailed in [28]. The extension of
this compatible Lagrangian hydrodynamics algorithm to unstructured grids, where each zone is a
polygon with an arbitrary number of sides, has been presented in [26].

6.3. Cell-centered scheme

This discretization employs a centered placement of the variables. That is density, pressure,
momentum and total energy are piecewise constant over each cell. The interface fluxes and the
nodal velocity are computed by means of a node-centered approximate Riemann solver. The re-
sulting nodal velocity allows to calculate zone volumes in a consistent manner with their geometric
definition. In this way, the GCL compatibility requirement is ensured [37, 84]. The main new
feature of the algorithm used here, is the introduction of four pressures on each edge, two for each
node on each side of the edge [84]. This extra degree of freedom allows to construct a nodal solver
which fulfills two properties. First, momentum and total energy are rigorously conserved at the
discrete level. Second, a semi-discrete entropy inequality is provided, which shows that kinetic
energy is correctly dissipated into internal energy through shock wave. The node based feature of
this scheme makes it naturally unstructured and thus able to deal with polygonal meshes. The
high-order extension is derived using a one-step time integrator, based on the Generalized Rie-
mann Problem (GRP) methodology [83]. It consists in solving the high-order Riemann problem
with piecewise linear polynomial, whereby the approximate solution is given as a time power series
expansion right at the interface. The acoustic version of the GRP method has been implemented
and extended to the framework of the two-dimensional node-centered Riemann solver. In this way,
we get an acoustic node-centered Generalized Riemann solver which provides the time derivatives
of the nodal velocity and pressures, needed for the high-order flux computation.

6.4. Time Step control

The Lagrangian discretizations require a time step control to ensure the stability of the schemes.
Let ∆tn denotes the current time step, the next time step, ∆tn+1, for both discretizations is
evaluated using several criteria. The first one is a standard CFL criterion based on the characteristic
time

∆tcfl = Ccfl min
c

lnc
a⋆,nc

,

where Ccfl is a strictly positive coefficient, lnc a characteristic zone length defined as the minimum of

edge lengths in the cell. The generalized sound speed, a⋆,nc , writes a⋆,nc =
√

γcP
⋆,n
c

ρn
c

, where γc is the

ratio of specific heats, ρnc the mean zone density. The generalized pressure, P ⋆,nc , writes P ⋆,nc = Pnc
for the cell-centered scheme and P ⋆,nc = Pnc +Qnc for the staggered scheme, where Pnc denotes the
mean zone pressure and Qnc the scalar part of the artificial viscosity tensors in a zone.

The second criterion ensures that a zone does not change its volume by too large an amount in
a time step. To this end, we define the characteristic time

∆tvol = Cvol min
c

1

| (∇ ·U)nc |
,
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where Cvol is a user defined coefficient and (∇ ·U)nc stands for the discrete divergence operator
related to cell c.

Finally, the new value of the time step reads

∆tn+1 = min (∆tcfl,∆tvol, Cmul∆t
n) .

Here, Cmul is a multiplicative coefficient which does not allow time step to increase too fast. For
numerical applications, we set (Ccfl, Cvol, Cmul) = (0.25, 0.1, 1.05). Note that for the staggered
discretization the new value of the time step is always chosen on the predictor step.

When we have to deal with polygonal cells containing small edges we need to supplement the
previous time step control with a criterion that prevents the cells from being non-convex or tangling
during the Lagrangian phase. To this end, let us consider a polygonal cell Ωc and one of its vertex
indexed by p. We also consider the previous and the next point of p in the counter-clockwise ordered
list of points of Ωc. We label them respectively p− and p+. The triangle formed with these points
is denoted Tpc, its area writes

| Tpc |=
1

2

(

XpXp+ ×XpXp−
)

· ez,

where ez supplements the orthonormal basis (ex,ey), i.e. ez = ex × ey. It is well known that the
cell Ωc is convex provided that the area of Tpc is strictly positive for each point p of the cell. We
will use this sufficient condition to predict an admissible time step. During the Lagrangian phase,
the position vector of the points is updated according to

X
n+1
p = X

n
p + ∆tU

n+ 1
2

p ,

where U
n+ 1

2
p is the time centered point velocity and ∆t is the current time step. It turns out that

the area of T n+1
pc is a quadratic function of ∆t. Thus, for each triangle Tpc we compute the strictly

positive time step so that T n+1
pc > 0. Next, we compute its minimum over the cell and the global

minimum over the whole polygonal mesh to get the characteristic time ∆tpol. Finally, we modify
the time step control as follows to take into account this new criterion

∆tn+1 = min (∆tcfl,∆tvol, Cpol∆tpol, Cmul∆t
n) ,

where the safety coefficient is set to Cpol = 0.25.

6.5. Multispecies thermodynamic closure

In this paragraph, we describe the multispecies thermodynamic closure model that we are using
to obtain an effective equation of state for our multicomponent fluid mixture. Every components
are completely miscible from a continuum view point. Let us denote by the subscript f the f-
th component of the mixture. We suppose that each fluid follows a gamma gas law, namely its
pressure, Pf , and specific internal energy, εf , write as function of temperature Tf

Pf =
R

Mf
ρfTf ,

εf =
R

(γf − 1)Mf
Tf ,
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where R denotes the perfect gas constant, γf the polytropic index of fluid f and Mf its molar
mass. Each fluid is characterized by its mass fraction Cf , which represents the ratio between the
mass of the fluid f and the total mass of the mixture. The mixture EOS closure problem requires
to find the equilibrium mixture pressure, P , and temperature, T , such that

1

ρ
=

F
∑

f=1

Cf
ρf
, volume conservation,

ε =

F
∑

f=1

Cfεf , energy conservation,

Pf = P, ∀f = 1 · · ·F, pressure equilibrium,

Tf = T, ∀f = 1 · · ·F, temperature equilibrium,

where F denotes the total number of fluids, ρ, ε are the density and the specific internal energy
of the mixture and ρf , εf the density and specific internal energy of fluid f . The solution of the
previous set of equations allows to write the following effective mixture gamma gas law

P = (γ − 1)ρε,

where γ is the effective polytropic index of the mixture, which writes

γ = 1 +

F
∑

f=1

Cf
Mf

F
∑

f=1

Cf
(γf − 1)Mf

. (7)

During the Lagrangian phase, the concentration of each fluid evolves following the trivial equation
d
dt
Cf = 0.

7. Rezone phase

7.1. Generators displacement

Let Ωn
c and Ωn+1

c denotes the Lagrangian cells at time tn and tn+1 = tn + ∆t where ∆t is
the current time step. The position vector of the generator of the Lagrangian cell Ωn

c is denoted
G
n
c . In this section we define the new position of the generator at time tn+1. First, we compute a

Lagrangian-like displacement of the generator by setting

G
n+1,lag
c = G

n
c + ∆tU c, (8)

where U c is the “Lagrangian” velocity of the generator within the cell. This velocity is computed so
that the generator remains located in the new Lagrangian cell. To this end we define this velocity
to be the average of the velocities of the points of the cell, namely

U c =
1

| P(c) |

∑

p∈P(c)

U
n+ 1

2
p .
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Here, P(c) denotes the set of points of the Lagrangian cell Ωc and U
n+ 1

2
p is the time-centered

velocity of point p between times tn and tn+1.
Let us introduce, X

n+1
c , the centroid of the Lagrangian cell Ωn+1

c , according to

X
n+1
c =

1

| Ωn+1
c |

∫

Ωn+1
c

XdV,

where | Ωn+1
c | denotes the volume of the cell Ωn+1

c . The updated position of the generator is
defined by mean of a convex combination between the new Lagrangian-like position, G

n+1,lag
c and

the centroid X
n+1
c of the Lagrangian cell at time tn+1

G
n+1
c = G

n+1,lag
c + ωc

(

X
n+1
c −G

n+1,lag
c

)

, (9)

where ωc ∈ [0; 1] is a parameter that remains to determine. With this convex combination, the
updated generator lies in between its Lagrangian position at time tn+1 and the centroid of the
Lagrangian cell Ωn+1

c . We note that for ωc = 0 we get a Lagrangian-like motion of the generator
whereas for ωc = 1 we obtain a centroidal-like motion, which tends to produce a smoothed mesh.
This latter case is equivalent to perform one Lloyd iteration [40, 39]. It remains to determine ωc.

7.2. Computation of the ω parameter

We compute ωc requiring that the generator displacement satisfies the principle of material
frame indifference, that is for pure uniform translation or rotation we want ωc to be zero. To
this end, we construct ωc using invariants of the right Cauchy-Green strain tensor associated with
deformation of the Lagrangian cell Ωc between times tn and tn+1. Let us recall some general notions
of continuum mechanics to define this tensor. First, we define the deformation gradient tensor F

F =
∂X

n+1

∂X
n ,

where X
n+1 = (Xn+1, Y n+1)t denotes the vector position of a point at time tn+1 that was located at

position X
n = (Xn, Y n)t at time tn. The deformation gradient tensor is nothing but the Jacobian

matrix of the map that connects the Lagrangian configurations of the flow at time tn and tn+1, in
the two-dimensional case its components write

F =

(

∂Xn+1

∂Xn
∂Xn+1

∂Y n

∂Y n+1

∂Xn
∂Y n+1

∂Y n

)

.

The right Cauchy-Green strain tensor, C, is obtained by right-multiplying F by its transpose, i.e.

C = F
t
F.

In our case, C is a 2 × 2 symmetric positive definite tensor. We notice that this tensor reduces to
the unitary tensor in case of uniform translation or rotation. It admits two positive eigenvalues,
which are denoted λ1 and λ2 with the convention λ1 ≤ λ2. These eigenvalues can be viewed as
the rates of expansion in a given direction during the transformation. To determine ωc, we first
construct the cell-averaged value of the deformation gradient tensor, Fc, and then the cell-averaged
value of the Cauchy-Green tensor by setting Cc = FtcFc. Noticing that the two rows of the F matrix
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correspond to the gradient vectors of the X and Y coordinates, we can set Ft =
[

∇nX
n+1,∇nY

n+1
]

,

where for any functions ψ = ψ(Xn), ∇nψ =
(

∂ψ
∂Xn ,

∂ψ
∂Y n

)t

. With these notations, let us define the

cell-averaged value of the gradient of the ψ function over the Lagrangian cell Ωn
c

(∇nψ)c =
1

| Ωn
c |

∫

Ωn
c

∇nψdV

=
1

| Ωn
c |

∫

∂Ωn
c

ψNdS.

Here, we have used the Green formula and N is the unit outward normal to the boundary of the
cell Ωn

c referred as to ∂Ωn
c . Knowing that this cell is a polygon, we make use of the trapezoidal rule

to obtain the following approximation for the previous integral

(∇nψ)c =
1

| Ωn
c |

|P(c)|
∑

p=1

1

2

(

ψnp + ψnp+1

)

Lnp,p+1N
n
p,p+1, (10)

where ψnp is the value of ψ evaluated at point X
n
p and Lnp,p+1N

n
p,p+1 is the outward normal to the

edge [Xn
p ,X

n+1
p ]. Applying (10) to ψ = Xn+1 and ψ = Y n+1 we get a cell-averaged expression of

the gradient tensor F and then deduce from it the cell-averaged value of the right Cauchy-Green
tensor Cc.

Knowing this symmetric positive definite tensor in each cell, we compute its real positive eigen-
values λ1,c, λ2,c. We finally define the parameter ωc as follows

ωc =
1− αc

1− αmin
, (11)

where αc =
λ1,c

λ2,c
and αmin = minc αc. We emphasize the fact that for uniform translation or rotation

λ1,c = λ2,c = 1 and ωc = 0, therefore the motion of the generator is quasi Lagrangian and we fulfill
the material frame indifference requirement. For other cases, ωc smoothly varies between 0 and
1. Note that more complex formulae for ωc are also possible, however we limit ourselves to the
previous simple formula and postpone deeper investigations in this area for future papers.

In Section 9 we demonstrate sensitivity of choice of parameter ωc on geometrical quality of the
mesh and accuracy of ReALE calculations on the example of Sedov problem. We also present color
map for values of the ωc for 2D Riemann problem, which demonstrate its ability to follow main
features of the flow. These results justify the choice of ωc described by equation (11).

7.3. Cleaning

Once the new position of generators G
n+1
c are computed one constructs the corresponding

Voronoi mesh. This mesh needs a last treatment as this Voronoi mesh may have arbitrary small
faces (edges). Such faces can drastically and artificially reduce the time step, and, more important
can lead to a lack of robustness. Consequently one defines a cutoff length Lεc = εLc, where Lc is a
characteristic length of the cell and ε a small parameter. Any face f of cell c of length Lf smaller
than the cutoff length Lεc, is removed from the Voronoi mesh , which lead to corresponding change
in the connectivity More specifically the vertices of such a face are merged (see Fig. 5 in Section 4);
one vertex is then discarded from the vertex list and the connectivity structure. In our calculations
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we have chosen ε = 0.01 and Lc =
P

f∈F(c) Lf

|F(c)| being the average of face lengths of cell c with F(c)
is the set of edges of cell c.
This “cleaned” polygonal mesh is no more of Voronoi kind but is well suited from a computational
point of view.

8. Remap phase

The remapping phase consists of a conservative interpolation of physical variables from the
Lagrangian polygonal mesh at the end of the Lagrangian step onto the new polygonal mesh after the
rezone step. The remapping phase must provide valid physical variables to the Lagrangian scheme,
moreover conservation of mass, momentum and total energy must be ensured, and, second-order
accuracy conservative interpolation must be performed.
As the old (Lagrangian) and new (rezoned) polygonal meshes may not have the same connectivity,
the remapping phase of our ReALE codes is based on exact intersection of a priori two different
polygonal meshes.
Primary variables are cell-centered density, velocity and specific total energy for the cell-centered
discretization whereas they are subcell density, nodal velocity and cell-centered specific internal
energy for staggered discretization. Conservative quantities are cell-centered mass, momentum and
total energy for the cell-centered approach whereas they are subcell mass, momentum and total
energy for the staggered discretization.

Cell-centered based remap. If the primary variables are located at the same position, as it is the case
for the cell-centered Lagrangian scheme, then the remapping phase is fairly simple [74], [58]. The
quantities on the old Lagrangian mesh are cell-centered density, velocity and total energy that must
be transfered on the rezoned mesh. First piecewise linear representations of cell-centered variables
ρc, ρcUc, ρcEc are constructed on the Lagrangian mesh. Then a slope limiting process [16] is
performed to enforce physically justified bounds. Conservative quantities, namely mass, momentum
and total energy, are obtained by integration of these representations. New conservative quantities
are calculated by integration over polygons of intersection of new (rezoned) and old (Lagrangian)
meshes. Finally, primary variables are simply recovered by division by new volume Ṽc (for density)
or new mass m̃c (for momentum and energy).

Subcell-centered based remap. Some difficulties arise when staggered location of variables is used,
as for any staggered Lagrangian scheme. Conservative quantities are therefore not located on the
same “entity”; mass is located at subcells, momentum at points. As a consequence, total energy
is not properly defined at a given location. In [81] a gathering-remapping-scattering algorithm has
been developed (see Fig.7 for a sketch); the main idea being to gather any conservative variable
at subcell level, remap on subcell base similarly to the cell-centered remapper from the previous
paragraph, and scatter back primary variables from subcells (density) to cell (internal energy) or
node (velocity). More specifically this method consists in the following three stage algorithm:

• Gathering: Mass, momentum, internal and kinetic energies are defined on subcells from
subcell density, nodal velocity and cell-centered specific internal energy in such a way that
conservation is preserved,

• Subcell remapping: Conservative remapping from Lagrangian mesh subcells onto rezoned
mesh subcells,
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Figure 7: Subcell remapping is performed in three phases - First, variables are gathered on subcells (left). Second a
subcell-based conservative remapping is performed. Third, a scattering stage redistributes subcell-based conservative
variables on nodes and cell centers (right).

• Scattering: Conservative recovery of primary variables (subcell density, nodal velocity, cell-
centered internal energy) on the rezoned mesh.

This remapping stage is followed by a repair technique to ensure physically justified bound preser-
vation [74, 108, 80].

Remapping of Concentrations. To use the multi-species EOS, we need to remap the concentrations
of the F fluids from the Lagrangian grid onto the rezoned one. To this end, we first compute the
mass of fluid f in the Lagrangian cell Ωn+1

c , mf,c =
∫

Ωn+1
c

ρCdV. We note that mc =
∑F

f=1mf,c

since
∑F

f=1 Cf,c = 1. Then, the mass of each fluid is interpolated conservatively onto the rezoned
grid following the methodology previously described for the cell-centered quantities. We denote its
new value by m̃f,c. At this point we notice that m̃c 6=

∑F
f=1 m̃f,c, this discrepancy comes from the

fact that our second-order remapping does not preserve linearity due to the slope limiting. Hence,

we define the new concentrations C̃f,c = m̃c

m̃f,c
and impose the renormalization C̃f,c ←−

C̃f,c
PF

f=1 C̃f,c

so that
∑F

f=1 C̃f,c = 1. We point out that this renormalization does not affect the global mass
conservation.

9. Numerical tests

In this section we present the numerical results obtained by the cell-centered ReALE code based
on CHIC ALE code, [83], and, the staggered ReALE code based on ALE INC(ubator) [101]. All
calculations are performed in Cartesian geometry - (x, y).

The first test is the well-known Sedov test case in planar geometry, it is used as a sanity check
as no physical vorticity is expected to occur and therefore reconnection-based methods are not
required. The second is a ”triple point” problem. It involves interaction of the shock with obstacle,
which leads to vorticity formation. Most of the ReALE studies are performed using this problem.
Third problem, shock interaction with a helium bubbler, is run in order to show the predictive
capabilities of ReALE technique - we compare numerical results with experimental data. Finally, a
Rayleigh-Taylor instability is run in order to assess the feasibility of capturing physical instability
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in an almost Lagrangian fashion. For this problem we compare our results with results obtained by
the front tracking code (FronTier - [38], [55], [56]) and a an implicit large eddy simulation (ILES)
incompressible Eulerian code (RTI3D - [3]).

All these tests, besides the Sedov test, generate high vorticity which is a classical cause of fail-
ure for Lagrangian schemes. For ALE codes with fixed-connectivity it usually leads to a conflict
between: a physics-based vortex-like motion with a tendency to tangle the mesh and, a geometrical-
based opposite motion enforced by the rezoning to avoid bad geometric quality cells. Such a conflict
leads to a stagnation of the mesh that reconnection is intended to cure.

9.1. Sedov problem

Let’s consider the Sedov blast wave problem in Cartesian coordinates. This problem models an
intense explosion in a perfect gas; it is an example of a diverging shock wave.
The computational domain is Ω, a quarter of a disk of radius 1.2 centered at the origin.

The initial conditions are characterized by (ρ0, P0,U 0) = (1, 10−6,0) for a perfect gas with
polytropic index set to γ = 7

5 . We model an initial delta-function energy source at the origin by
prescribing internal energy in the cell adjacent to the origin (see Fig.8)

εor =
E0
Vor

, (12)

where Vor denotes the volume of the cell and E0 is the total amount of released energy. For
E0 = 0.244816, the front of a diverging shock is located at the radius R = 1 at the time t = 1. The
peak density reaches the value 6. Symmetry boundary conditions are applied on the axis whereas
zero velocity boundary condition is applied at radius 1.2.

The initial polygonal mesh is a Voronoi tessellation computed using 441 generators, see Fig.8.
The positions of generators are arranged similarly to how it described in Section 4 for meshing
bubble, Fig. 4.

To run this test we do not need ALE, and a fortiori ReALE, technique; pure Lagrangian schemes
usually perform well. However we will present the Lagrangian, ALE and ReALE results (both for
the cell-centered and staggered code) for the sake of comparison. Different generator motions are
also compared.

Lagrangian, ALE and ReALE results. We present the meshes in Fig.9 (resp. 10) panels (a)-(c)-(e)
for the cell-centered CHIC-based methods (resp. for the staggered ALE INC-based methods). The
density for these methods is presented as a function of the cell radius for all cells in Figs.9-10 panels
(b), (d), (f); it is plotted against an exact solution (straight line). As known, Lagrangian schemes
behave properly for the Sedov test case as seen on Figs.9-10 panel (a)-(b). The final Lagrangian
mesh presents expanded cells in the rarefaction wave and compressed ones after the shock wave.
ALE techniques (panels (c)-(d)) can improve the smoothness of the mesh; some numerical diffusion
is added during the remapping phase as can be seen on panels (d) of Figs.9-10. ReALE technique
used with deformation-tensor based generator motion (see panels (e)-(f)) is able to produce a
smooth mesh and density profiles comparable with standard ALE.

The CHIC-based methods give higher pick density value in comparison with ALE INC.-based
methods because formally Lagrangian phase in CHIC method is second-order accurate and La-
grangian phase in ALE INC. method is first-order accurate. Small differences in ALE results
(panels (c) and (d)) can be attributed to slightly different rezone strategy.
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Figure 8: Initial mesh for Sedov problem.

Generator displacement. The same problem is run with the cell-centered CHIC-based ReALE code
and staggered ALE INC.-based ReALE code with three different generator the quasi-Lagrangian
one (ωc = 0), the quasi-centroidal one (ωc = 1) and the motion based on the deformation tensor
(ωc = f(λ1, λ2)).

The results for CHIC-based ReALE code presented in Fig.11. As expected the quasi-Lagrangian
generator motion leads to non-smooth mesh which, however, adapted quite well to the flow. One
can mention that symmetry is not well preserved, which in particular can be attributed to non-
smoothness of the mesh (Fig. 11 (a), (b)). On the other hand, the quasi-centroidal generator
motion, (Fig. 11 (c), (d)), leads to a smooth mesh that is not adapted anymore to the fluid flow;
density is oversmoothed due to excessive remapping. Finally the motion based on the deformation
tensor described in Section 7, (Fig. 11 (e), (f)), produces a locally smooth mesh and keeps finer
cell region after the shock wave passes through, and coarser cell region after expansion.

In Fig.12 we present the same results for the staggered ALE INC.-based ReALE, code and the
same conclusions apply.

Results presented here justify rezone strategy based on the analysis of the deformation tensor
described in Section 7 and the rest of the paper in all numerical ReALE simulations we use only
this rezone strategy.

The Sedov test case is not extremely demanding neither for Lagrangian nor ALE scheme.
Contrarily, the next test cases involve generation of the vorticity and are intended to demonstrate
the capabilities of the new ReALE method.

9.2. Triple point problem - Two material Riemann Problem

This problem is a three state two-material 2D Riemann problem in a rectangular vessel. The
triple point problem simulation domain is Ω = [0; 7] × [0; 3] as described in Fig.13. Ω is split into
three regions filled with two perfect gases leading to a two material problem. The high pressure
high density state is Ω1 = [0; 1] × [0; 3], the low pressure high density state is Ω2 = [1; 7] × [0; 1.5]
and the low pressure low density is Ω3 = [1; 7] × [1.5; 3]. The initial densities are ρ1 = ρ3 = 1,
ρ2 = 0.125, the initial pressures are p1 = 1, p3 = p2 = 0.1, the initial velocity is zero everywhere.
The perfect equation of state is used with γ1 = γ3 = 1.5, γ2 = 1.4.
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Figure 9: Sedov problem at time t = 1.0 for Lagrangian, ALE and ReALE strategies — Cell-centered CHIC code —
Left column: Mesh. Right column: Density as a function of radius for all cells vs the exact solution (line) — (a)-(b)
Lagrangian — (c)-(d) ALE — (e)-(f) ReALE.
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Figure 10: Sedov problem at time t = 1.0 for Lagrangian, ALE and ReALE strategies — Staggered ALE INC code
— Left column: Mesh. Right column: Density as a function of radius for all cells vs the exact solution (line) —
(a)-(b) Lagrangian — (c)-(d) ALE — (e)-(f) ReALE.
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Figure 11: Sedov problem at time t = 1.0 for different generator displacement strategies— Cell-centered CHIC code
— Left column: Mesh. Right column: Density as a function of radius for all cells vs the exact solution (line) —
(a)-(b) Quasi-Lagrangian generator motion ωc = 0 — (c)-(d) Quasi-centroidal generator motion ωc = 1 — (e)-(f)
Deformation-tensor based generator motion ωc = f(λ1, λ2).
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Figure 12: Sedov problem at time t = 1.0 for different generator displacement strategies— Staggered ALE INC code
— Left column: Mesh. Right column: Density as a function of radius for all cells vs the exact solution (line) —
(a)-(b) Quasi-Lagrangian generator motion ωc = 0 — (c)-(d) Quasi-centroidal generator motion ωc = 1 — (e)-(f)
Deformation-tensor based generator motion ωc = f(λ1, λ2).
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Figure 13: Triple point problem.

Due to the discrepancy in density, two shocks in domains Ω2 and Ω3 propagate with different speeds.
This creates a shear along initial contact discontinuity and a vorticity formation. We note that the
Lagrangian computation fails before vortex is developed due to the mesh tangling. Capturing the
vorticity is the difficult part of such simulation when standard ALE method is used.

Initially 72 × 32 generators are positioned on a perfect quadrangular grid leading to 2304 de-
generate Voronoi cells. The generators are located in such a way that, initially there is no mixed
cells and the triple point coincides with a vertex of the mesh. This mesh is intentionally coarse,
such that differences between the methods can be visually observed. The boundary conditions are
reflective ones.
The fluid flow after the breakup of the initial discontinuity is characterized by a left facing rar-
efaction wave and two right facing shock waves separated by an ”horizontal” contact discontinuity.
These two shocks travels with different speeds since the densities of the materials are different.
This leads to a strong vortex formation. The final time is t = 5.

9.2.1. Results obtained by cell-centered ReALE method

Lagrangian scheme failure. Time tfail ≃ 1.67 corresponds, more or less, to the time after which any
Lagrangian scheme inexorably fails. In Fig.14 we present the Lagrangian (top panels), ALE (middle
panels) and ReALE (bottom panels) results for the cell-centered CHIC code for this time moment.
The internal energy and meshes are displayed in the left panel (top part is mesh and internal energy,
bottom part is color map for internal energy). In the right panels of Fig.14 we present the mesh for
each method such that the cells have been colored according to in which domain (Ω1 in dark-red,
Ω2 in orange, Ω3 in white) they were initially located. The Lagrangian scheme produces results
that follow the motion of the fluid but the scheme fails because of mesh tangling in vicinity of the
vortex. The ALE method does not allow the mesh to follow the fluid motion and the mesh does
not tangle. The ReALE seems to allow the cells to follow the vortex-shaped fluid motion, and up
to this moment color map related to the initial location for Lagrangian and ReALE methods are
very close, Fig.14. This is indication that our rezone strategy is able to keep ”centers” of the cells
very close to its Lagrangian positions.

It is important to note that due to our choice of parameter ωc, participating in movement of
generators in ReALE method, meshes in front of shocks have not changed.
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Figure 14: Triple point problem at time tfail for which Lagrangian scheme fails— Cell-centered CHIC code — Left
column: Internal energy and mesh. Right column: Cell color corresponds to the initial domain (Ω1, Ω2 and Ω3) —
Top: Lagrangian method; Middle: ALE method; Bottom: ReALE method.
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Figure 15: Triple point problem at final time to observe stagnation of ALE mesh— Cell-centered CHIC code — Left
column: Internal energy and mesh. Right column: Cell color corresponds to the initial domain (Ω1, Ω2 and Ω3) —
Top: ALE method; Bottom: Cell-centered (CHIC-based) ReALE method.

”Stagnation” of the mesh in ALE method. ALE and ReALE perform up to the final time t = 5.
In Fig.15 we present results for ALE and ReALE for final time - arrangements are the same as in
Fig.14. Results of the ALE calculation clearly show a mesh ”stagnation” behavior as can be seen
on the initial domain color map, whereas the ReALE allows the cells to be carried along with the
vortex.

In ALE calculation (top panels of Fig.15), the mesh is ”freezes” near the vortex center and
the computation continues in an almost Eulerian fashion (as Lagrange+Remap because the rezone
phase systematically backs up the Lagrangian tn+1 mesh onto the previous tn Lagrangian mesh).

In ReALE calculation (bottom panels of Fig.15), mesh follows the vortex as generators are
carried within the fluid in an almost Lagrangian fashion. As a consequence ReALE has a better
accuracy, which can be seen comparing internal energy color maps for ALE and ReALE. In ReALE
results one can see roll up formation and in ALE results it is not that pronounced. Let as note
that quantitative analysis of accuracy will be presented in the separate paper.
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Figure 16: Triple point problem at several times for ReALE — Cell-centered CHIC results for internal energy and
mesh — From top-left to bottom-right: times t = 1, 3, 4.5, 5.

ReALE results. In Fig.16 we present dynamics of the ReALE simulation by showing the mesh and
the specific internal energy at different time moments t = 1 (beginning of vortex development), t = 3
(before the fastest shock reaches right wall), t = 4.5 (after shock reflection), t = 5 (after reflected
shock reaches contact discontinuity). The meshes with initial domain coloring are presented in
Fig.17.

Features of the flow and ωc factor. In Fig.18 are presented the ωc factors for different snapshots
of the simulation.The ωc factor shows the deformation encountered by the mesh between two last
time steps. Comparison of these plots with structure of the main waves presented in Fig. 16 clearly
demonstrate that ωc dynamically detect main features of the flow. It is important to note that ωc is
very small in high vorticity regions (as it intended to be) and therefore movement of the generators
in these areas is almost Lagrangian.
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Figure 17: Triple point problem at several times for ReALE — Cell-centered CHIC results — Cell color corresponds
to the initial domain. From top-left to bottom-right: times t = 1, 3, 4.5, 5.
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Figure 18: Triple point problem at several times for ReALE — Cell-centered CHIC results for variable ωc — From
top-left to bottom-right: times t = 1, 3, 4.5, 5.
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Figure 19: Triple point problem at several times for ReALE — Staggered - ALE INC. results — internal energy and
mesh. From top-left to bottom-right: times t = 1, 3, 4.5, 5.

9.2.2. Comparison of cell-centered and staggered ReALE methods

In this section we give brief comparison of ReALE calculations based on cell-centered CHIC
method with results obtained by ReALE method based on staggered ALE INC. method.

In Fig. 19 we present internal energy and mesh plots for ALE INC.-based ReALE method for
different time moments. It has to be compared with CHIC-based ReALE results presented in Fig.
16. In Fig. 20 we present coloring by initial region for staggered method.

Finally, we present side by side comparison of two methods in Fig.21.
One can see only very small differences between cell-centered and staggered ReALE methods.
Results presented in this section and results for Sedov problem allows us to conclude that

ReALE approach can be used for either cell-centered or staggered discretization basic Lagrangian
scheme.

Detailed comparison of cell-centered and staggered discretizations is beyond of the goal of this
paper and in the reminder of the paper we will present only results for cell-centered discretization.
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Figure 20: Triple point problem at several times for ReALE — Staggered ALE INC. results — Cell color corresponds
to the initial domain. From top-left to bottom-right: times t = 1, 3, 4.5, 5.
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Figure 21: Triple point problem. Comparison of cell-centered (left panels) and staggered (right panels) ReALE
methods at the final time moment. Top panels - internal energy and mesh, bottom panels - coloring by initial region.
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Figure 22: Shock/Bubble interaction. A piston (right boundary) moving to the left and compresses air initially at
rest sending a shock wave that passes through an helium bubble.
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9.3. Bubble shock interaction

The computational domain is Ω = [0; 0.65] × [0; 0.178]. The bubble is a disk defined by the
coordinates of its center (xc, yc) = (0.320, 0) and its radius Rb = 0.025 (see Fig.22). We prescribe
reflective boundary conditions at each boundary except the right boundary (initially at x = 0.65);
right-boundary is the piston which moves inward with velocity V

⋆ = (u⋆, 0). The incident shock
wave is defined by its Mach number, Ms = 1.22. The bubble and the air are initially at rest. The
initial data for Helium bubble is (ρ1, P1) = (0.182, 105), its molar mass is M1 = 5.269 10−3 and
its polytropic index is γ1 = 1.648. The initial data for air is (ρ2, P2) = (1, 105), its molar mass is
M2 = 28.963 10−3 and its polytropic index is γ2 = 1.4. It is two material problem. Specific internal
energies are ε1 = 8.4792 105 and ε2 = 2.5 105. Using the Rankine-Hugoniot relations, we find that
the x-velocity of the piston is given by u⋆ = −124.824. The x-component of the incident shock
velocity is Dc = −456.482. The incident shock wave hits the bubble at time ti = 668.153 × 10−6.
The stopping time for our computation is tend = ti+ 674× 10−6 = 1342.153× 10−6 . It corresponds
to the time for which experimental Schlieren graph (results from [60]) is displayed in [98] (Figure
9(i)). Initial mesh is constructed with a set of 19061 generators and designed to produce a Voronoi
mesh that has a mesh lines which matches the bubble boundary (see bottom left panel in Fig.23,
where a zoom of the initial mesh around the bubble is presented). The description of initial mesh
generation given in Section 4. Initial density is presented in top panel in Fig.23. The middle panel
presents the final density which corresponds to the deformed bubble. The bottom panels of this
figure show a zoom on the initial and final bubble location and the underlying initial and final
meshes.

In Fig.24 (left column) we present density at several intermediate time moments for a zoomed
region around the bubble (t = 1005.15 × 10−6 (top panel), t = 1101.44 × 10−6 (middle panel) and
t = tend = 1342.153 × 10−6 (bottom panel)). Color maps related to coloring by initial region are
presented in right column of Fig.24 (white color for the cells originally in the air; red color for
the cells originally in the bubble). One can conclude that Lagrangian motion is well preserved by
ReALE method.

In Fig.25 (left panel) we present the cell-centered value Ic = Ch,c (1− Ch,c) at final time tend =
1342.153× 10−6, where Ch,c is the concentration of helium in cell c. Originally Ch,c is equal to 1 if
generator c belongs to helium bubble and 0 otherwise. Therefore Ic is initially 0 for all cell. As the
simulation advances, mixed cells are created close to the interface between the different materials,
leading to values Ic 6= 0. The Ic map show how much interface is diffused; grayscale spreads from
Ic = 0 (white) to Ic = 1/4 (black). As seen in left panel in Fig.25 interface region is spread only
over one or two cells.

Experimental results for this test case can be found in [60] and high-resolution numerical ex-
periments performed with an AMR Eulerian code in [98]. In in Fig.25 (middle and right panels)
a comparison of the Schlieren image of the experimental results from [60] (right panel) with our
numerical results (middle panel) at tend = 1342.153 × 10−6.

Presented numerical results show that qualitatively ReALE technique can reproduce experi-
mental results (Fig.25). We are planning to perform quantitative comparison with available ex-
perimental results as well as with high-resolution numerical results presented in [98] in special
paper.

9.4. Rayleigh-Taylor instability

Our final test in this paper is Rayleigh-Taylor instability problem. It consists of two ideal gases
with densities ρtop = 2 and ρbottom; in both cases the adiabatic constant γ = 1.4. Initially, the
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Figure 23: Shock/Bubble interaction problem. Top: Initial density; Middle: Final density; Bottom: Zoom on the
initial bubble and final bubble density and mesh.
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Figure 24: Shock/Bubble interaction problem at t = 1005.15 × 10−6 (top panel), t = 1101.44 × 10−6 (middle panel)
and t = tend = 1342.153 × 10−6 (bottom panel) — Left column: Density and mesh. Right column: Coloring by the
initial domains (white: air, red: bubble).
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Figure 25: Shock/Bubble interaction problem at tend = 1342.153 × 10−6 — Left: Zoom of color map for Ic =
Ch,c (1 − Ch,c): grayscale goes from Ic = 0 (white) to Ic = 1/4 (black); Middle: Zoom of color map for density:
colorscale goes from ρc = 0.23 (blue) to ρc = 1.42 (red); — Right: Schlieren image from experimental data in [60]

heavier gas is above the lighter gas in rectangular vessel Ω = [0 : 1/3] × [0 : 1], with gravitational
field directed vertically downward and with magnitude g = 0.1. The interface has been deliberately
perturbed as described by formula y(x) = 1

2 + 1
100 cos(6πx). Initially both gases are at the rest; the

pressure distribution is approximately hydrostatic and is defined in the lighter gas

pbottom(x, y) = 1 +
1

2
ρtop g + ρbottom g

(

1

2
− y

)

,

and in the heavier gas:
ptop(x, y) = 1 + ρtop g (1− y) .

It is well known that this configuration is unstable and as time progresses, the heavier gas will
sink and the lighter gas will rise through the formation of bubbles and spikes. This problem does
not involve any shock wave, but the vorticity is so high that pure Lagrangian schemes eventually
fail.

9.4.1. Initial phase of instability

The ReALE simulation starts with a Voronoi cleaned mesh obtained via 24× 72 generators (24
in x-direction, 72 in y, see Fig.26 (a)). These are initially set so that the interface y(x) is well
approximated by edges of cells, (see Fig.26-(a)).
In Fig.26 we present the density and mesh for several time moments: t = 0, 3, 5, 8, 9.

As a matter of comparison and verification we use results obtained by others methods:

• FronTier (front tracking) code [38], [55], [56] is used to get a reference solution for the interface
between the two fluids. The results of this code are used by the courtesy of J. Grove of the
Los Alamos National Laboratory. FronTier is run with much more finer resolution (106×320
cells). This interface is plotted with a black thick lines in Fig. 27.

• RTI3D code (an implicit large eddy simulation (ILES) incompressible Eulerian code based
on control volume approach, using a 2nd order Van-Leer method for volume fraction and
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Figure 26: Rayleigh-Taylor instability — ReALE results at times t = 0, 3, 5, 7, 9 (from (a) to (e)) — Mesh and
density — Color scale is from blue (ρ = 1) to red (ρ = 2).
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momentum advection, see [3]). It is used with a grid resolution of 24 × 74 fixed cells. This
Eulerian code provides a qualitative spatial and temporal behavior of vorticity. The results of
this code are used by the courtesy of M. J. Andrews of the Los Alamos National Laboratory.

• Finally the CHIC-based ALE code without reconnection is used with an initial logically
rectangular grid of 24× 72.

In Fig.27 we present the density (t = 7, 8, 9) and the vorticity (t = 7, 8, 9) for the ReALE, ALE
codes (top and middle panels) and the RTI3D code (bottom panel). The FronTier interface is
plotted as a thick black line on the top of each graph. The color scale for density is the same for all
calculations, it is from 1 to 2. The general shape is resolved reasonably well by all three methods
The tip of the interface is better resolved by ReALE method, Fig.27 - left panels.

In the right panels in Fig.27 we present color maps for vorticity, curlhcu which is finite difference
approximation of curl u in the cell Ωc based on Green formula. For vorticity we have following
ranges. For time t = 7 - ReALE: -3.53/3.55; ALE: -3.04/3.04; RTI3D: -5.00/5.00. For time t = 8
- ReALE: -3.72/3.84; ALE: -3.68/3.68; RTI3D: -4.95/4.95. For time t = 9 - ReALE: -3.81/3.89;
ALE: -4.52/4.52; RTI3D: -5.61/5.61.

We think that because RTI3D is incompressible code its vorticity color map is more sharp.
ReALE clearly gives results closer to RTI3D and much sharper than ALE results. The ReALE
results seem to better match spatial distribution of the vorticity, which matches interface shape.
We wish to point that with this low resolution the ALE simulation code produces acceptable
results. However if a finer resolution is to be used, the mesh becomes very pinched and stretched
so that numerical oscillations are generated (see Fig.1 from the motivation section as example).
As a consequence vorticity and, in general, most physical variables are contaminated leading to
stability issues. In ReALE due to reconnection mesh follows the fluid, which allows to obtain more
meaningful results (see Section 9.4.2 for high-resolution ReALE results).

Finally in Fig.28 we show the mean vorticity, as a function of time for all three methods ReALE,
ALE and RTI3D. Discrete mean vorticity is defined as follows

√

∑

c

{

|curlhc u|2 |Ωc|
}

|Ω|
∼

√

∫

Ω |curl u|2 dV

|Ω|
.

We observe that the ReALE suppresses vorticity less than ALE does. Qualitatively time evolution
of mean vorticity is very similar for all three methods.

9.4.2. ReALE simulation of the later stages of the Rayleigh-Taylor instability

In this section we present high-resolution (66× 200 generators are used leading to 13200 cells)
results for later stages of Rayleigh-Taylor instability. We perform our calculations up to time t = 15
when the heavy fluid has reached the bottom of the vessel and lighter fluid almost reached top of the
vessel. In Fig.29 we present color maps of the density at time moments t = 8, 9, 10, 11, 12, 13, 14, 15.
In the last three figures one can clearly see violation of symmetry with respect to central vertical
line. This is because this flow is very unstable and also because cleaning procedure in our rezone
strategy is non-symmetric and depends on cell ordering.

Finally, in Fig.30, we present density, vorticity and cells colored by initial domain at time t = 15.
Right panel in Fig.30 also shows the mesh.

Results presented in this section shows that ReALE method can be used to run problems with
strong shear deformation without any special tuning of the parameters of the rezone strategy during
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Figure 27: Rayleigh-Taylor instability — Top panel: ReALE results. Middle panel: ALE results. Bottom panel:
RTI3D Eulerian code results — Left to Right: Density at t = 7, 8, 9, Vorticity at t = 7, 8, 9. Color scale is from blue
(minimal negative vorticity) to red (maximal positive vorticity). White color corresponds to zero vorticity. Frontier
interface is the thick black line. 44
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Figure 28: Time evolution of the mean vorticity for the Rayleigh-Taylor instability — ReALE, ALE and RTI3D
results are displayed.

the calculations. This is is impossible for standard ALE methods without mesh reconnection, where
user intervention is usually required.

10. Conclusion and perspectives

We have presented a new reconnection-based ALE method. It includes three main elements.

• An explicit Lagrangian phase in which the solution on polygonal mesh is updated (without
changing mesh connectivity).

• A rezoning phase in which a new grid is defined using specific movement of generators and
formalism of Voronoi diagrams. It allows the change of mesh connectivity. In this work
we keep number of cells unchanged, but number of vertices of each cell can change due to
connectivity evolution. Generator movement is chosen in such a way that cell movement is
close to Lagrangian and cell shape is close to regular hexagon.

• A remapping phase in which the Lagrangian solution is transferred (conservatively interpo-
lated) from one polygonal mesh to another.

On numerical examples we have demonstrated that our new method is more accurate and robust
in comparison with standard ALE methods with fixed connectivity.

We recognize that our new method requires more testing, which we are planning to do in
the future. We also recognize that the question of efficiency is very important. The particular
implementation of our method used to obtain numerical results in this paper was not intended to
be optimal and uses pieces which originally were not intended to work together. For this reason we
do not present any comparison of efficiency of ALE and ReALE. We will do it in the future paper.
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Figure 29: Rayleigh-Taylor instability — ReALE with 66 × 200 generators at t = 8, 9, 10, 11, 12, 13, 14, 15 (from
top-left to bottom-right) — Density.
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Figure 30: Rayleigh-Taylor instability — ReALE with 66 × 200 generators at t = 15 — Density, vorticity and, mesh
and cells colored by their initial domain; Vorticity scale is from −11.78 to 9.63 (blue for the minimal value to red for
the maximal one).
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Also we are planning to explore different mechanisms for mesh adaptation. In the framework of
current ReALE method at rezone stage we can develop new strategies for the choice of ω parameter
to reflect features of the flow. We also could move vertices (as in standard ALE) after reconnection is
done. We are planning to use mechanism of weighted Voronoi diagrams, [41] to introduce adaptivity
by choosing weight proportional to some monitor function, which may be an error indicator or may
just reflect some physics which requires mesh refinement. The adaptation can be also achieved by
adding or deleting cells. In principle, ReALE is perfectly suited for this strategy.

In next paper we are planning to present 2D results in r − z - axisymmetric geometry, which
will allow to demonstrate performance of our method for interesting and more realistic problems.

Also in future we will incorporate interface reconstruction methods such as volume of fluid
(VOF) [100, 102] and moment of fluid (MOF) [49, 2, 72]. Moreover we plan to incorporate more
advanced closure models for mixed multimaterial cells, [107]. This will increase accuracy of multi-
material calculations.
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